a3f6f4442b
- Add a few predefined blur kernels, requested by jerri in #104. - Add compton-convgen.py to generate blur kernels.
133 lines
3.7 KiB
Python
Executable File
133 lines
3.7 KiB
Python
Executable File
#! /usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
# vim:fileencoding=utf-8
|
|
|
|
import math, argparse
|
|
|
|
class CGError(Exception):
|
|
def __init__(self, value):
|
|
self.value = value
|
|
def __str__(self):
|
|
return repr(self.value)
|
|
|
|
class CGBadArg(CGError): pass
|
|
class CGInternal(CGError): pass
|
|
|
|
def mbuild(width, height):
|
|
"""Build a NxN matrix filled with 0."""
|
|
result = list()
|
|
for i in range(height):
|
|
result.append(list())
|
|
for j in range(width):
|
|
result[i].append(0.0)
|
|
return result
|
|
|
|
def mdump(matrix):
|
|
"""Dump a matrix in natural format."""
|
|
for col in matrix:
|
|
print("[ ", end = '');
|
|
for ele in col:
|
|
print(format(ele, "13.6g") + ", ", end = " ")
|
|
print("],")
|
|
|
|
def mdumpcompton(matrix):
|
|
"""Dump a matrix in compton's format."""
|
|
width = len(matrix[0])
|
|
height = len(matrix)
|
|
print("{},{},".format(width, height), end = '')
|
|
for i in range(height):
|
|
for j in range(width):
|
|
if int(height / 2) == i and int(width / 2) == j:
|
|
continue;
|
|
print(format(matrix[i][j], ".6f"), end = ",")
|
|
print()
|
|
|
|
def mnormalize(matrix):
|
|
"""Scale a matrix according to the value in the center."""
|
|
width = len(matrix[0])
|
|
height = len(matrix)
|
|
factor = 1.0 / matrix[int(height / 2)][int(width / 2)]
|
|
if 1.0 == factor: return matrix
|
|
for i in range(height):
|
|
for j in range(width):
|
|
matrix[i][j] *= factor
|
|
return matrix
|
|
|
|
def mmirror4(matrix):
|
|
"""Do a 4-way mirroring on a matrix from top-left corner."""
|
|
width = len(matrix[0])
|
|
height = len(matrix)
|
|
for i in range(height):
|
|
for j in range(width):
|
|
x = min(i, height - 1 - i)
|
|
y = min(j, width - 1 - j)
|
|
matrix[i][j] = matrix[x][y]
|
|
return matrix
|
|
|
|
def gen_gaussian(width, height, factors):
|
|
"""Build a Gaussian blur kernel."""
|
|
|
|
if width != height:
|
|
raise CGBadArg("Cannot build an uneven Gaussian blur kernel.")
|
|
|
|
size = width
|
|
sigma = float(factors.get('sigma', 0.84089642))
|
|
|
|
result = mbuild(size, size)
|
|
for i in range(int(size / 2) + 1):
|
|
for j in range(int(size / 2) + 1):
|
|
diffx = i - int(size / 2);
|
|
diffy = j - int(size / 2);
|
|
result[i][j] = 1.0 / (2 * math.pi * sigma) * pow(math.e, - (diffx * diffx + diffy * diffy) / (2 * sigma * sigma))
|
|
mnormalize(result)
|
|
mmirror4(result)
|
|
|
|
return result
|
|
|
|
def gen_box(width, height, factors):
|
|
"""Build a box blur kernel."""
|
|
result = mbuild(width, height)
|
|
for i in range(height):
|
|
for j in range(width):
|
|
result[i][j] = 1.0
|
|
return result
|
|
|
|
def gen_invalid(width, height, factors):
|
|
raise CGBadArg("Unknown kernel type.")
|
|
|
|
def args_readfactors(lst):
|
|
"""Parse the factor arguments."""
|
|
factors = dict()
|
|
if lst:
|
|
for s in lst:
|
|
res = s.partition('=')
|
|
if not res[0]:
|
|
raise CGBadArg("Factor has no key.")
|
|
if not res[2]:
|
|
raise CGBadArg("Factor has no value.")
|
|
factors[res[0]] = float(res[2])
|
|
return factors
|
|
|
|
parser = argparse.ArgumentParser(description='Build a convolution kernel.')
|
|
parser.add_argument('type', help='Type of convolution kernel. May be "gaussian" (factor sigma = 0.84089642) or "box".')
|
|
parser.add_argument('width', type=int, help='Width of convolution kernel. Must be an odd number.')
|
|
parser.add_argument('height', nargs='?', type=int, help='Height of convolution kernel. Must be an odd number. Equals to width if omitted.')
|
|
parser.add_argument('-f', '--factor', nargs='+', help='Factors of the convolution kernel, in name=value format.')
|
|
parser.add_argument('--dump-compton', action='store_true', help='Dump in compton format.')
|
|
args = parser.parse_args()
|
|
|
|
width = args.width
|
|
height = args.height
|
|
if not height:
|
|
height = width
|
|
if not (width > 0 and height > 0):
|
|
raise CGBadArg("Invalid width/height.")
|
|
factors = args_readfactors(args.factor)
|
|
|
|
funcs = dict(gaussian = gen_gaussian, box = gen_box)
|
|
matrix = (funcs.get(args.type, gen_invalid))(width, height, factors)
|
|
if args.dump_compton:
|
|
mdumpcompton(matrix)
|
|
else:
|
|
mdump(matrix)
|