picom/bin/compton-convgen.py

162 lines
4.5 KiB
Python
Executable File

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# vim:fileencoding=utf-8
import math
import argparse
class CGError(Exception):
'''An error in the convolution kernel generator.'''
def __init__(self, desc):
super().__init__(desc)
class CGBadArg(CGError):
'''An exception indicating an invalid argument has been passed to the
convolution kernel generator.'''
pass
def mbuild(width, height):
"""Build a NxN matrix filled with 0."""
result = list()
for i in range(height):
result.append(list())
for j in range(width):
result[i].append(0.0)
return result
def mdump(matrix):
"""Dump a matrix in natural format."""
for col in matrix:
print("[ ", end='')
for ele in col:
print(format(ele, "13.6g") + ", ", end=" ")
print("],")
def mdumpcompton(matrix):
"""Dump a matrix in compton's format."""
width = len(matrix[0])
height = len(matrix)
print("{},{},".format(width, height), end='')
for i in range(height):
for j in range(width):
if int(height / 2) == i and int(width / 2) == j:
continue
print(format(matrix[i][j], ".6f"), end=",")
print()
def mnormalize(matrix):
"""Scale a matrix according to the value in the center."""
width = len(matrix[0])
height = len(matrix)
factor = 1.0 / matrix[int(height / 2)][int(width / 2)]
if 1.0 == factor:
return matrix
for i in range(height):
for j in range(width):
matrix[i][j] *= factor
return matrix
def mmirror4(matrix):
"""Do a 4-way mirroring on a matrix from top-left corner."""
width = len(matrix[0])
height = len(matrix)
for i in range(height):
for j in range(width):
x = min(i, height - 1 - i)
y = min(j, width - 1 - j)
matrix[i][j] = matrix[x][y]
return matrix
def gen_gaussian(width, height, factors):
"""Build a Gaussian blur kernel."""
if width != height:
raise CGBadArg("Cannot build an uneven Gaussian blur kernel.")
size = width
sigma = float(factors.get('sigma', 0.84089642))
result = mbuild(size, size)
for i in range(int(size / 2) + 1):
for j in range(int(size / 2) + 1):
diffx = i - int(size / 2)
diffy = j - int(size / 2)
result[i][j] = 1.0 / (2 * math.pi * sigma) \
* pow(math.e, - (diffx * diffx + diffy * diffy) \
/ (2 * sigma * sigma))
mnormalize(result)
mmirror4(result)
return result
def gen_box(width, height, factors):
"""Build a box blur kernel."""
result = mbuild(width, height)
for i in range(height):
for j in range(width):
result[i][j] = 1.0
return result
def _gen_invalid(width, height, factors):
'''Handle a convolution kernel generation request of an unrecognized type.'''
raise CGBadArg("Unknown kernel type.")
def _args_readfactors(lst):
"""Parse the factor arguments."""
factors = dict()
if lst:
for s in lst:
res = s.partition('=')
if not res[0]:
raise CGBadArg("Factor has no key.")
if not res[2]:
raise CGBadArg("Factor has no value.")
factors[res[0]] = float(res[2])
return factors
def _parse_args():
'''Parse the command-line arguments.'''
parser = argparse.ArgumentParser(description='Build a convolution kernel.')
parser.add_argument('type', help='Type of convolution kernel. May be "gaussian" (factor sigma = 0.84089642) or "box".')
parser.add_argument('width', type=int, help='Width of convolution kernel. Must be an odd number.')
parser.add_argument('height', nargs='?', type=int, help='Height of convolution kernel. Must be an odd number. Equals to width if omitted.')
parser.add_argument('-f', '--factor', nargs='+', help='Factors of the convolution kernel, in name=value format.')
parser.add_argument('--dump-compton', action='store_true', help='Dump in compton format.')
return parser.parse_args()
def _main():
args = _parse_args()
width = args.width
height = args.height
if not height:
height = width
if not (width > 0 and height > 0):
raise CGBadArg("Invalid width/height.")
factors = _args_readfactors(args.factor)
funcs = dict(gaussian=gen_gaussian, box=gen_box)
matrix = (funcs.get(args.type, _gen_invalid))(width, height, factors)
if args.dump_compton:
mdumpcompton(matrix)
else:
mdump(matrix)
if __name__ == '__main__':
_main()