compton-convgen: Misc: Clean up
compton-convgen: Misc: Clean up. The commit brings no change to the functionality of the script. - Partially fix PEP 8 compliance: - Place imports on separate lines. - Replace leading tabs with 4 spaces. - Add docstrings to classes and functions. - Surround top-level function and class definitions with two blank lines. - Remove spaces around keyword arguments. - Move all statements to separate lines. - Break some long lines into several lines. - Remove trailing semicolons after statements. - CGError: Use functionality from the base class Exception to store the description, instead of the custom logic. - CGInternal: Remove, as it is unused. - Hide the internal function gen_invalid() and args_readfactors() by prefixing their names with an underscore. - Move the module-level command-line handling code to two new functions, _main() and _parse_args(), and only execute if running in the main scope.
This commit is contained in:
parent
2343e4bbd2
commit
f1cd308cde
|
@ -1,132 +1,161 @@
|
||||||
#! /usr/bin/env python3
|
#!/usr/bin/env python3
|
||||||
# -*- coding: utf-8 -*-
|
# -*- coding: utf-8 -*-
|
||||||
# vim:fileencoding=utf-8
|
# vim:fileencoding=utf-8
|
||||||
|
|
||||||
import math, argparse
|
import math
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
|
||||||
class CGError(Exception):
|
class CGError(Exception):
|
||||||
def __init__(self, value):
|
'''An error in the convolution kernel generator.'''
|
||||||
self.value = value
|
def __init__(self, desc):
|
||||||
def __str__(self):
|
super().__init__(desc)
|
||||||
return repr(self.value)
|
|
||||||
|
|
||||||
|
class CGBadArg(CGError):
|
||||||
|
'''An exception indicating an invalid argument has been passed to the
|
||||||
|
convolution kernel generator.'''
|
||||||
|
pass
|
||||||
|
|
||||||
class CGBadArg(CGError): pass
|
|
||||||
class CGInternal(CGError): pass
|
|
||||||
|
|
||||||
def mbuild(width, height):
|
def mbuild(width, height):
|
||||||
"""Build a NxN matrix filled with 0."""
|
"""Build a NxN matrix filled with 0."""
|
||||||
result = list()
|
result = list()
|
||||||
for i in range(height):
|
for i in range(height):
|
||||||
result.append(list())
|
result.append(list())
|
||||||
for j in range(width):
|
for j in range(width):
|
||||||
result[i].append(0.0)
|
result[i].append(0.0)
|
||||||
return result
|
return result
|
||||||
|
|
||||||
|
|
||||||
def mdump(matrix):
|
def mdump(matrix):
|
||||||
"""Dump a matrix in natural format."""
|
"""Dump a matrix in natural format."""
|
||||||
for col in matrix:
|
for col in matrix:
|
||||||
print("[ ", end = '');
|
print("[ ", end='')
|
||||||
for ele in col:
|
for ele in col:
|
||||||
print(format(ele, "13.6g") + ", ", end = " ")
|
print(format(ele, "13.6g") + ", ", end=" ")
|
||||||
print("],")
|
print("],")
|
||||||
|
|
||||||
|
|
||||||
def mdumpcompton(matrix):
|
def mdumpcompton(matrix):
|
||||||
"""Dump a matrix in compton's format."""
|
"""Dump a matrix in compton's format."""
|
||||||
width = len(matrix[0])
|
width = len(matrix[0])
|
||||||
height = len(matrix)
|
height = len(matrix)
|
||||||
print("{},{},".format(width, height), end = '')
|
print("{},{},".format(width, height), end='')
|
||||||
for i in range(height):
|
for i in range(height):
|
||||||
for j in range(width):
|
for j in range(width):
|
||||||
if int(height / 2) == i and int(width / 2) == j:
|
if int(height / 2) == i and int(width / 2) == j:
|
||||||
continue;
|
continue
|
||||||
print(format(matrix[i][j], ".6f"), end = ",")
|
print(format(matrix[i][j], ".6f"), end=",")
|
||||||
print()
|
print()
|
||||||
|
|
||||||
|
|
||||||
def mnormalize(matrix):
|
def mnormalize(matrix):
|
||||||
"""Scale a matrix according to the value in the center."""
|
"""Scale a matrix according to the value in the center."""
|
||||||
width = len(matrix[0])
|
width = len(matrix[0])
|
||||||
height = len(matrix)
|
height = len(matrix)
|
||||||
factor = 1.0 / matrix[int(height / 2)][int(width / 2)]
|
factor = 1.0 / matrix[int(height / 2)][int(width / 2)]
|
||||||
if 1.0 == factor: return matrix
|
if 1.0 == factor:
|
||||||
for i in range(height):
|
return matrix
|
||||||
for j in range(width):
|
for i in range(height):
|
||||||
matrix[i][j] *= factor
|
for j in range(width):
|
||||||
return matrix
|
matrix[i][j] *= factor
|
||||||
|
return matrix
|
||||||
|
|
||||||
|
|
||||||
def mmirror4(matrix):
|
def mmirror4(matrix):
|
||||||
"""Do a 4-way mirroring on a matrix from top-left corner."""
|
"""Do a 4-way mirroring on a matrix from top-left corner."""
|
||||||
width = len(matrix[0])
|
width = len(matrix[0])
|
||||||
height = len(matrix)
|
height = len(matrix)
|
||||||
for i in range(height):
|
for i in range(height):
|
||||||
for j in range(width):
|
for j in range(width):
|
||||||
x = min(i, height - 1 - i)
|
x = min(i, height - 1 - i)
|
||||||
y = min(j, width - 1 - j)
|
y = min(j, width - 1 - j)
|
||||||
matrix[i][j] = matrix[x][y]
|
matrix[i][j] = matrix[x][y]
|
||||||
return matrix
|
return matrix
|
||||||
|
|
||||||
|
|
||||||
def gen_gaussian(width, height, factors):
|
def gen_gaussian(width, height, factors):
|
||||||
"""Build a Gaussian blur kernel."""
|
"""Build a Gaussian blur kernel."""
|
||||||
|
|
||||||
if width != height:
|
if width != height:
|
||||||
raise CGBadArg("Cannot build an uneven Gaussian blur kernel.")
|
raise CGBadArg("Cannot build an uneven Gaussian blur kernel.")
|
||||||
|
|
||||||
size = width
|
size = width
|
||||||
sigma = float(factors.get('sigma', 0.84089642))
|
sigma = float(factors.get('sigma', 0.84089642))
|
||||||
|
|
||||||
result = mbuild(size, size)
|
result = mbuild(size, size)
|
||||||
for i in range(int(size / 2) + 1):
|
for i in range(int(size / 2) + 1):
|
||||||
for j in range(int(size / 2) + 1):
|
for j in range(int(size / 2) + 1):
|
||||||
diffx = i - int(size / 2);
|
diffx = i - int(size / 2)
|
||||||
diffy = j - int(size / 2);
|
diffy = j - int(size / 2)
|
||||||
result[i][j] = 1.0 / (2 * math.pi * sigma) * pow(math.e, - (diffx * diffx + diffy * diffy) / (2 * sigma * sigma))
|
result[i][j] = 1.0 / (2 * math.pi * sigma) \
|
||||||
mnormalize(result)
|
* pow(math.e, - (diffx * diffx + diffy * diffy) \
|
||||||
mmirror4(result)
|
/ (2 * sigma * sigma))
|
||||||
|
mnormalize(result)
|
||||||
|
mmirror4(result)
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
return result
|
|
||||||
|
|
||||||
def gen_box(width, height, factors):
|
def gen_box(width, height, factors):
|
||||||
"""Build a box blur kernel."""
|
"""Build a box blur kernel."""
|
||||||
result = mbuild(width, height)
|
result = mbuild(width, height)
|
||||||
for i in range(height):
|
for i in range(height):
|
||||||
for j in range(width):
|
for j in range(width):
|
||||||
result[i][j] = 1.0
|
result[i][j] = 1.0
|
||||||
return result
|
return result
|
||||||
|
|
||||||
def gen_invalid(width, height, factors):
|
|
||||||
raise CGBadArg("Unknown kernel type.")
|
|
||||||
|
|
||||||
def args_readfactors(lst):
|
def _gen_invalid(width, height, factors):
|
||||||
"""Parse the factor arguments."""
|
'''Handle a convolution kernel generation request of an unrecognized type.'''
|
||||||
factors = dict()
|
raise CGBadArg("Unknown kernel type.")
|
||||||
if lst:
|
|
||||||
for s in lst:
|
|
||||||
res = s.partition('=')
|
|
||||||
if not res[0]:
|
|
||||||
raise CGBadArg("Factor has no key.")
|
|
||||||
if not res[2]:
|
|
||||||
raise CGBadArg("Factor has no value.")
|
|
||||||
factors[res[0]] = float(res[2])
|
|
||||||
return factors
|
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(description='Build a convolution kernel.')
|
|
||||||
parser.add_argument('type', help='Type of convolution kernel. May be "gaussian" (factor sigma = 0.84089642) or "box".')
|
|
||||||
parser.add_argument('width', type=int, help='Width of convolution kernel. Must be an odd number.')
|
|
||||||
parser.add_argument('height', nargs='?', type=int, help='Height of convolution kernel. Must be an odd number. Equals to width if omitted.')
|
|
||||||
parser.add_argument('-f', '--factor', nargs='+', help='Factors of the convolution kernel, in name=value format.')
|
|
||||||
parser.add_argument('--dump-compton', action='store_true', help='Dump in compton format.')
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
width = args.width
|
def _args_readfactors(lst):
|
||||||
height = args.height
|
"""Parse the factor arguments."""
|
||||||
if not height:
|
factors = dict()
|
||||||
height = width
|
if lst:
|
||||||
if not (width > 0 and height > 0):
|
for s in lst:
|
||||||
raise CGBadArg("Invalid width/height.")
|
res = s.partition('=')
|
||||||
factors = args_readfactors(args.factor)
|
if not res[0]:
|
||||||
|
raise CGBadArg("Factor has no key.")
|
||||||
|
if not res[2]:
|
||||||
|
raise CGBadArg("Factor has no value.")
|
||||||
|
factors[res[0]] = float(res[2])
|
||||||
|
return factors
|
||||||
|
|
||||||
funcs = dict(gaussian = gen_gaussian, box = gen_box)
|
|
||||||
matrix = (funcs.get(args.type, gen_invalid))(width, height, factors)
|
def _parse_args():
|
||||||
if args.dump_compton:
|
'''Parse the command-line arguments.'''
|
||||||
mdumpcompton(matrix)
|
|
||||||
else:
|
parser = argparse.ArgumentParser(description='Build a convolution kernel.')
|
||||||
mdump(matrix)
|
parser.add_argument('type', help='Type of convolution kernel. May be "gaussian" (factor sigma = 0.84089642) or "box".')
|
||||||
|
parser.add_argument('width', type=int, help='Width of convolution kernel. Must be an odd number.')
|
||||||
|
parser.add_argument('height', nargs='?', type=int, help='Height of convolution kernel. Must be an odd number. Equals to width if omitted.')
|
||||||
|
parser.add_argument('-f', '--factor', nargs='+', help='Factors of the convolution kernel, in name=value format.')
|
||||||
|
parser.add_argument('--dump-compton', action='store_true', help='Dump in compton format.')
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def _main():
|
||||||
|
args = _parse_args()
|
||||||
|
|
||||||
|
width = args.width
|
||||||
|
height = args.height
|
||||||
|
if not height:
|
||||||
|
height = width
|
||||||
|
if not (width > 0 and height > 0):
|
||||||
|
raise CGBadArg("Invalid width/height.")
|
||||||
|
factors = _args_readfactors(args.factor)
|
||||||
|
|
||||||
|
funcs = dict(gaussian=gen_gaussian, box=gen_box)
|
||||||
|
matrix = (funcs.get(args.type, _gen_invalid))(width, height, factors)
|
||||||
|
if args.dump_compton:
|
||||||
|
mdumpcompton(matrix)
|
||||||
|
else:
|
||||||
|
mdump(matrix)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
_main()
|
||||||
|
|
Loading…
Reference in New Issue